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We consider the generation of internal waves by a source in a uniform stream of strati- 
fied fluid. Asymptotic methods are usually used in studying the internal wave field [i, 
2]. An exact solution of this problem was found in [3] in the form of quadratures of special 
functions and numerical results were given for the case of constant Vaisala-Brunt frequency 
N(z). The case of a two-layer fluid was considered in [4]. In the present paper we give 
new, simpler quadrature formulas for the field, present numerical results based on these 
formulas for arbitrary N(z), and discuss the local features of the wave field near the source. 

The field of internal waves in a layer 0 < z < H produced by a source at rest in a stream 
of stratified fluid is described in the Boussineq approximation by the equation 
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where ~(x, y, z, t) is the elevation and is related to the vertical component of the velocity 
w(x, y, z, t) by the relation w = an/at; v is the velocity of the stream; z 0 is the depth 
of the source; 8(t) = 0 for t ~ 0 and 0(t) = 1 for t > 0; Q is the strength of the source. 

The boundary conditions are written in the approximation of rigidly fixed top and bottom 
boundaries of the layer 

q = 0 ,  z = 0 ,  H.  
(2) 

It was shown in [5J that the solution of (i) and (2) can be represented as a sum of modes, 
each of which has a maximum group velocity Cn(C l > c 2 > ...). We consider the most common 
case when v > Cn, n = i, 2, ... Then the solution of problem (i), (2) takes the form [5] 
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Here ~n(Z, k) and ~n(k) are the eigenfunctions and eigenvalues of the problem 
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When v < c~ t h e  s o l u t i o n  i s  more  c o m p l i c a t e d  and  t h i s  c a s e  r e q u i r e s  a s e p a r a t e  t r e a t m e n t .  

The i n n e r  i n t e g r a l  i n  ( 3 )  i s  e v a l u a t e d  by c l o s i n g  t h e  c o n t o u r  o f  i n t e g r a t i o n  w i t h  r e -  
s p e c t  t o  ~ i n  t h e  u p p e r  h a l f p l a n e  f o r  g < 0 (g = x + v t )  and  i n  t h e  l o w e r  h a l f p l a n e  f o r  g > 
0.  We c o n s i d e r  t h e  l o c a t i o n s  o f  t h e  s i n g u l a r  p o i n t s  ( p o l e s  and  b r a n c h  p o i n t s )  o f  t h e  i n t e -  
g r a n d  i n  ( 3 )  f o r  r e a l  v and c o m p l e x  ~. 

I t  c an  be shown t h a t  p o l e s  o f  t h i s  e x p r e s s i o n  [ t h e  r o o t s  o f  t h e  e q u a t i o n  ~=v ~ = 
mn=(~T-~] exist only for real u=, i.e., ~ must either be real [> = • or purely 
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imaginary [p = • Indeed, it follows from (3) that the roots of the equation pmv 2 = 
~n2(~v2 + ~2) are the eigenvalues of the problem 

o:~ r ".~ r -r- .... p;~ (v ~,~ is, ",') = O, 
~-,u; (~.) (5) 

, , ,  = o (s = O,H), 

which is not a classical Sturm-Liouville problem, since the spectral parameter pn(V) does 
not enter in the standard way. Multiplying (5) by the complex-conjugate function ~n(Z, v) 
and integrating with respect to z, we obtain 

t ' t  

L ',':~ I~,,, (:, v) l 2 -I- 
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I . ,  o ~[.,~ (v) Ir (z, 9 i ~ & = O. 

When ImPn2(V) a O, the imaginary part of the integrand has the opposite sign of ImPn2(V) 
and the integral does not vanish. This contradiction proves that the spectral problem (5) 
only exists for real pna(Z). An analogous treatment can be given for > = • where 
%n(V) are the eigenvalues of the problem 

e=' + [L - r  + x;, (,.) - I , , ( ; ,  v) == o, 

/ , ,  = o  ( z = o ,  _H). 

If v > cz, then eigenvalues %n(V) and eigenfunctions fn(Z, v) exist for the spectral problem 
(5) for any v. 

The function mnm(/v = + p2) can also have branch points for complex values p = p,(v), 
for which 8m/Sk diverges at k = k, = /~2 + p,2(v). Differentiating (4) with respect to the 

H 

parameter k, it is not difficult to show that for this to occur we must have N~(z) 
0 

k)dz = 0. 

Hence, in the integration with respect to D in (3), the contribution of the integrals 
along the cuts must be taken into account, in addition to the contributions of the poles 
at the points > = iDn(~) and H = • However, the integrals along the cuts cancel one 
another out in the summation over n in (3). 

Indeed, let ~ = ~, be a branch point of the function mn( ~-2 + ~2). Since each of the 
branches of the function mn(/~ + ~2) is obviously an eigenvalue of the spectral problem 
(4), there are several eigenvalues which join into a single value in the limit p + p, and 
transform into one another when going around the branch point ~ = >,. In the simplest case 
there will be two such eigenvalues: ahq and mm, which transform into one another when going 
around the branch point. When going around the branch point in the sum (3), the term qn 
transforms into Nm, Nm transforms into qn, and the sum qn + qm obviously transforms into 
itself. In other words, for the sum qn + Nm the point ~ = ~, is a removable singular point 
and, therefore, the integral along the cut vanishes. Similarly, one can show that the inte- 
grals along the cuts can be neglected in the case of higher-order branch points. Therefore, 
the integrals with respect to ~ in each of the terms of (3) can be evaluated taking into 
account only the poles of the integrand. Furthermore, we will consider the case of a single 
mode. Closing the contour of integration with respect to ~ in the upper halfplane for ~ < 
0 and in the lower halfplane for $ > 0, it can be shown that qn = I+ + I_ + I 0 ($ > 0) or 
qn = -I0 (6 < 0). Here 
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The properties of the functions pn(V) have been described in [5]. We consider the func- 
tion An(V). It is not difficult to show, using the perturbation method, that for small v, 

in(V) can be expanded in a series of even powers of v: in(V) = a n + Bn v2 + .... where a n are 
determined from the Sturm-Liouville problem 

,!-~,, 4- + ~ ,  p , , = O ,  p , ~ = O  (-:; =O.H), 
r ~ L~ 

in which pn(Z) = fn(z, 0) and 
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Similarly, it can be shown that in the limit v + ~ the function An(V) has the expansion 

~,,(v) = v i- ?./v l- 8./v ~ ~ ' 

H 

o 

We used the N(z) distribution shown in Fig. 1 in the numerical calculations. The results 
of the calculations using Eqs. (7) and (8) with v = 2 m/sec, y = 300 m, Q = 1 m3/sec, z = 
200 m, z 0 = 22 m are shown in Fig. 2. Calculations were performed for the first three modes. 
We see that the separate terms qn (n = i, 2, 3) are all discontinuous at $ = 0, but their 
sum is continuous. For large y the main contribution to the field results from the term 
I+; the other terms, including the integral along the cut, are negligibly small and the func- 
tions become practically continuous. Hence, in the numerical calculation of the near field, 
the continuity of the sum can serve as a criterion for determining the number of modes con- 
tributing to the total field. 
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We note that in the calculation of the vertical velocity field w, the individual modes 
are always continuous, since the integrals along the cuts contribute with the same sign when 
closing the contour of integration upward (~ < 0) and downward ($ > 0). In this case the 
branch points appear as pairs and the integrand is odd in p. The above criterion cannot 
be used in this case. 
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TURBULENT FLOATING JET IN A STRATIFIED ATMOSPHERE 

G. S. Golitsyn, Yu. A. Gostintsev, and A. F. Solodovnik UDC 536.253 

The reliability of predictions of the ecological consequences of a number of natural 
and anthropogenic catastrophes (volcano eruptions, large fires, atomic electric station emer- 
gencies, nuclear explosions) depends to a significant extent on the accuracy of predicting 
the initial spatial pattern of atmospheric pollution above individual heat and impurity 
sources [i]. The maximal altitude of impurity ejection and its concentration distribution 
in space at a time near to termination of average vertical freely convective movements of 
clouds or jets of heated products are understood to be the initial pollution. 

Depending on the relationship between the time of heat (impurity) source action t s and 
the characteristic time of thermal relaxation of the atmosphere t N = 2~N -1 (N is the Vaisala- 
Brunt frequency), two limiting spatial configurations of freely convective motions [2] can 
be separated out. If t s ~ t N (in the limit for instantaneous energy liberation) then a 
floating cloud, a thermal, severed from the earth, is formed rapidly in the atmosphere. A 
convective column of an ascending jet movement of the products is formed above the focus 
for the reverse relationship between the times (in the limit for a permanently acting source). 
For the standard state of the atmosphere (N = 0.0106 sec -I in the tropospheric layer) t N = 
i0 min. During this time the cloud or jet reaches its maximal point of ascent and starts 
to be deformed in mainly a horizontal direction. The thermal will here perform damping vibra- 
tional vertical motions around the thermal equilibrium level, while the convective column 
(from a fire focus, say) will form a slowly expanding configuration of a quasistationary 
jet flow at the altitude of hanging. 

The transport of impurities in the atmosphere by powerful thermals is investigated in 
sufficient detail by both analytic [2-5] and numerical [6, 7] methods and the predictions 
of theory are mainly in good agreement with experimental results. Results of studying the 
second limit case of freely convective motions, the two-dimensional axisymmetric turbulent 
floating jet, are elucidated below. 
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